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Abstract

We analyze the scaling behaviors of two log permeability data sets showing heavy-
tailed frequency distributions in three and two spatial dimensions, respectively. One set
consists of 1-m scale pneumatic packer test data from six vertical and inclined bore-
holes spanning a decameters scale block of unsaturated fractured tuffs near Superior,5

Arizona, the other of pneumatic minipermeameter data measured at a spacing of 15 cm
along two horizontal transects on a 21 m long outcrop of lower-shoreface bioturbated
sandstone near Escalante, Utah. Order q sample structure functions of each data set
scale as a power ξ(q) of separation scale or lag, s, over limited ranges of s. A proce-
dure known as Extended Self-Similarity (ESS) extends this range to all lags and yields10

a nonlinear (concave) functional relationship between ξ(q) and q. Whereas the liter-
ature tends to associate extended and nonlinear power-law scaling with multifractals
or fractional Laplace motions, we have shown elsewhere that (a) ESS of data having
a normal frequency distribution is theoretically consistent with (Gaussian) truncated
(additive, self-affine, monofractal) fractional Brownian motion (tfBm), the latter being15

unique in predicting a breakdown in power-law scaling at small and large lags, and
(b) nonlinear power-law scaling of data having either normal or heavy-tailed frequency
distributions is consistent with samples from sub-Gaussian random fields or processes
subordinated to tfBm, stemming from lack of ergodicity which causes sample moments
to scale differently than do their ensemble counterparts. Here we (i) demonstrate that20

the above two data sets are consistent with sub-Gaussian random fields subordinated
to tfBm and (ii) provide maximum likelihood estimates of parameters characterizing the
corresponding Lévy stable subordinators and tfBm functions.
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1 Introduction

Many earth and environmental (as well as physical, ecological, biological and financial)
variables exhibit power-law scaling of the following type. Let

Sq
N (s) =

1
N(s)

N(s)∑
n=1

|∆Yn(s)|q (1)

be an order q sample structure function of a random function Y (x) defined on a con-5

tinuum of points x in one- or multi-dimensional space (or time), ∆Yn(s) = Y (xn+s · l)−
Y (xn) being a sampled increment of Y (x) over a separation distance (lag) s in one or
multiple directions, defined by one or more unit vectors l, between two points and N(s)
the number of measured increments. Power-law scaling of Y (x) is described by

Sq
N (s) ∝ sξ(q) (2)10

where the power or scaling exponent, ξ(q), is independent of s. When the scaling ex-
ponent is linearly proportional to q, ξ(q) = Hq, Y (x) is interpreted to be a self-affine
(additive, monofractal) random field (or process) with Hurst exponent H . When ξ(q)
varies nonlinearly with q, Y (x) has traditionally been taken to represent multiplicative,
multifractal random fields or processes (Neuman, 2010a; Guadagnini et al., 2012).15

Nonlinear power-law scaling is also exhibited by fractional Laplace motions (Meer-
schaert et al., 2004; Kozubowski et al., 2006) recently applied to sediment transport
data by Ganti et al. (2009).

Power-law scaling is typically assessed by employing the method of moments to
analyze samples of measured variables. This entails inferring sample structure func-20

tions Eq. (1) for a set q1, q2, ..., qn of q values at various lags. The structure function
Sqi
N is related to s by linear regression on a log-log scale, the power ξ(qi ) (i = 1, 2,

. . . , n) being set equal to the slope of the regression line. Linear or near-linear de-
pendence of logSqi

N on log s is typically limited to intermediate ranges of separation
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scales, sI < s < sII, outside of which power-law scaling breaks down. The lower and
upper limits, sI and sII respectively, which demarcate the range of power-law scaling
are defined theoretically or, in most cases, empirically (Siena et al., 2012; Stumpf and
Porter, 2012). Benzi et al. (1993a, b) provided empirical evidence that a procedure they
had termed Extended Self-Similarity (ESS) allows widening significantly the range of5

lags over which velocities in fully developed turbulence (where sI is taken to be gov-
erned by the Kolmogorov’s dissipation scale) scale in a manner consistent with Eq. (2).
Writing Eq. (2) as Sn(s) = C(n) sξ(n) and Sm(s) = C(m) sξ(m), solving one of these equa-
tions for s and substituting into the other yields the ESS expression

Sn(s) ∝ Sm(s)β(n,m) (3)10

where β(n,m) = ξ(n)/ξ(m) is a ratio of scaling powers. Although the literature does
not explain how and why Eq. (3) should apply to lags s < sI and s > sII where power-
law scaling Eq. (2) breaks down, it nevertheless includes numerous examples demon-
strating this to be the case. In addition to the classic case of turbulent velocities
(Chakraborty et al., 2010) these examples include geographical (e.g., Earth and Mars15

topographic profiles), hydraulic (e.g., river morphology and sediment dynamics), at-
mospheric, astrophysical, (e.g., solar quiescent prominence, low-energy cosmic rays,
cosmic microwave background radiation, turbulent boundary layers of the Earth’s mag-
netosphere), biological (e.g., human heartbeat temporal dynamics), financial time se-
ries and ecological variables; see Guadagnini and Neuman (2011), Leonardis et al.20

(2012) and references therein. In virtually all these examples ESS yields improved
estimates of ξ(q) and shows it to vary in a nonlinear fashion with q, a finding com-
monly taken to imply that the variables are multifractal. Yet computational analyses by
Guadagnini and Neuman (2011) have shown that this need not be the case: they found
signals constructed from sub-Gaussian processes subordinated to truncated (additive,25

self-affine, monofractal) fractional Brownian motion (tfBm) to display ESS scaling as
well as typical symptoms of multifractality, such as nonlinear scaling and intermittency,
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even though the signals differ from multifractals in a fundamental way (Neuman, 2010a,
2010b, 2011; Guadagnini et al., 2012).

Siena et al. (2012) have pointed out that since multifractals and fractional Laplace
motions do not capture observed breakdowns in power-law scaling at small and large
lags, they cannot explain how and why ESS does so. Instead, they have proven theoret-5

ically that ESS of data having a normal frequency distribution is theoretically consistent
with tfBm. This allowed them to identify the functional form and estimate all parameters
of the particular tfBm corresponding to log air permeability data collected by Tidwell
and Wilson (1999) on the faces of a laboratory-scale block of Topopah Spring tuff. In
this paper we employ ESS to analyze the scaling behaviors of two log permeability data10

sets showing heavy-tailed frequency distributions in three and two spatial dimensions,
respectively. One set consists of 1-m scale pneumatic packer test data from six vertical
and inclined boreholes spanning a decameters-scale block of unsaturated fractured
tuffs near Superior, Arizona (Guzman et al., 1996). Another set contains pneumatic
minipermeameter data measured at a spacing of 15 cm along two horizontal transects15

on a 21 m long outcrop of lower-shoreface bioturbated sandstone near Escalante, Utah
(Castle et al., 2004). Our analysis (a) demonstrates that the two data sets are statis-
tically and theoretically consistent with sub-Gaussian random fields subordinated to
tfBm and (b) provides maximum likelihood estimates of parameters characterizing the
corresponding Lévy stable subordinators and tfBm functions.20

2 Theoretical background

We start by recounting the theory that underlies our analysis of the data.

7383

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/7379/2012/hessd-9-7379-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/7379/2012/hessd-9-7379-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 7379–7413, 2012

Extended power-law
scaling of

heavy-tailed random
fields or processes

A. Guadagnini et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.1 Sub-Gaussian processes subordinated to truncated fractional Brownian
motion (tfBm)

Following Guadagnini et al. (2012) we limit (for simplicity) our theoretical exposé to
a single space or time coordinate x, considering random functions Y (x) characterized
by constant mean and sub-Gaussian fluctuations (Samorodnitsky and Taqqu, 1994;5

Adler et al., 2010)

Y ′(x;λl ,λu) =W 1/2G′(x;λl ,λu) (4)

about the mean. Here W 1/2 is an α/2-stable random variable, totally skewed to the

right of zero with width parameter σW =
(
cos πα

4

)2/α
, unit skewness β = 1 and zero shift,

µ = 0; for a precise definition of these parameters see Eq. (18) below. The variable W10

is independent of G′(x;λl ,λu), which in turn is a zero-mean Gaussian random field (or
process) described by truncated power variogram (TPV)

γ2
i (s;λl ,λu) = γ2

i (s;λu)−γ2
i (s;λl ) (5)

where, for m = l ,u,

γ2
i (s;λm) = σ2 (λm)ρi

(
s/λm

)
15

σ2 (λm) = Aλ2H
m /2H

ρ1
(
s/λm

)
=
[
1−exp

(
−s/λm

)
+
(
s/λm

)2H
Γ
(
1−2H ,s/λm

)]
0 < H < 0.5

20

ρ2
(
s/λm

)
=
[

1−exp
(
−π
(
s/λm

)2/4
)
+
(
π
(
s/λm

)2/4
)H

Γ
(

1−H ,π
(
s/λm

)2/4
)]

0 < H < 1
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A being a constant and Γ(·, ·) the incomplete gamma function (other functional forms of
ρ being theoretically possible). For λu <∞, the increments ∆Y ′(x,s;λl ,λu) are station-
ary with zero-mean symmetric Lévy stable distribution characterized by 1 < α ≤ 2 and
scale or width function (semi-structure function when α = 2; Samorodnitsky and Taqqu,
1994)5

σα(s;λl ,λu) =
[
γ2
i (s;λl ,λu)

]α/2
. (6)

In the limits λl → 0 and λu →∞ the TPV γ2
i (s;λl ,λu) converges to a power variogram

(PV) γ2
i (s) = Ais

2H where A1 = AΓ(1−2H)/2H and A2 = A(π/4)2H/2Γ(1−2H/2)/2H .
Correspondingly, σα(s;λl ,λu) converges to a power law γα

i (s) = Ais
αH where A1 =

AΓ(1−αH)/αH and A2 = A(π/4)αH/2Γ(1−αH/2)/αH . The resultant nonstationary10

field G′(x;0,∞) thus constitutes fractional Brownian motion (fBm), its stationary incre-
ments ∆G′(x,s;0,∞) forming fractional Gaussian noise (fGn); the nonstationary field

Y ′(x;0,∞) constructed from increments ∆Y ′(s;0,∞) =W 1/2∆G(x,s;0,∞) constitutes
fractional Lévy motion (fLm; fBm when α = 2), the increments forming sub-Gaussian
fractional Lévy noise (fLn or fsn for fractional stable noise, e.g., Samorodnitsky and15

Taqqu, 1994; Samorodnitsky, 2006).

It is possible to select a subordinator W 1/2 ≥ 0 having a heavy-tailed distribution

other than Lévy such as, for example, a log-normal W 1/2 = eV with 〈V 〉 = 0 and 〈V 2〉 =
(2−α)2. Samples generated through subordination of truncated monofractal fBm in the
above manner exhibit apparent multifractal scaling (Guadagnini et al., 2012).20
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2.2 Extended power-law scaling of sub-Gaussian processes subordinated
to tfBm

It is important to note that whereas power-law scaling Eq. (2) implies ESS scaling
Eq. (3), the reverse is not necessarily true because Eq. (3) follows from the more
general relationship5

Sq(s) ∝ f (s) ξ(q) (7)

where f (s) is a (possibly nonlinear) function of s (Kozubowski and Molz, 2011; Siena
et al., 2012).

Following Neuman et al. (2012) we first consider subordinators W 1/2 ≥ 0 that have

finite moments 〈W q/2〉 of all orders q, such as the log-normal form mentioned ear-10

lier. Then, in a manner analogous to Siena et al. (2012), the central qth-order
moments of absolute values of zero-mean stationary increments ∆Y ′(x,s;λl ,λu) =

W 1/2∆G′(x,s;λl ,λu) can be expressed as

Sq =
〈∣∣∆Y ′ (s; λl ,λu)

∣∣q〉 =
〈
W q/2

〉〈∣∣∆G′ (s; λl ,λu)
∣∣q〉

=
〈
W q/2

〉[√
2γ2

i (s; λl ,λu)
]q

(q−1)!!

{ √
2
π if q is odd

1 if q is even

q = 1,2,3... (8)

Here !! represents double factorial, i.e., q!! = q(q−2)(q−4)...2 if q is even and q!! =15

q(q−2)(q−4)...3 if q is odd, and γ2
i (s; λl ,λu) is the (truncated power) variogram (TPV)

of G′ (x; λl ,λu). The ratio between structure functions of order (q+1) and q is then

Sq+1

Sq = g(q)


√
π q!!

(q−1)!!

√
γ2
i (s; λl ,λu) if q is odd

2√
π

q!!
(q−1)!!

√
γ2
i (s; λl ,λu) if q is even

q = 1,2,3... (9)

where g(q) depends on the choice of subordinator but not on s. In the log-

normal case where W 1/2 = eV with 〈V 〉 = 0 and 〈V 2〉 = (2−α)2 one obtains 〈W q/2〉 =20
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exp[q2(2−α)2/2] and g(q) = 〈W (q+1)/2〉/〈W q/2〉 = exp[(1+2q)(2−α)2/2]. It then fol-
lows from Eqs. (8) and (9) that

Sq+1 = g(q)


√

π
2

[√
π
2

1
(q−1)!!

] 1
q

q!!
(q−1)!!

[
Sq]1+ 1

q if q is odd√
2
π

[
1

(q−1)!!

] 1
q q!!

(q−1)!!

[
Sq]1+ 1

q if q is even

q = 1,2,3... (10)

showing that log Sq+1 is linear in log Sq, in accord with the ESS expression Eq. (3),
regardless of the choice of subordinator or the model employed for 〈∆G′ (s; λl ,λu)2〉.5

On log-log plot, this line is characterized by a slope which tends to unity as q →∞,
being equal to 2 at q = 1. Equation (10) is a consequence of the equivalence between

Eq. (8) and ESS expression Eq. (7) in which now f (s) = [
√

2γ2(s; λl ,λu)]. It shows that
extended power-law scaling, or ESS, at all lags is an intrinsic property of sub-Gaussian
processes subordinated to tfBm with subordinators, such as the log normal, which have10

finite moments of all orders.
We noted earlier that, in the limits λl → 0 and λu →∞, the TPV γ2

i (s;λl ,λu) con-
verges to a PV γ2

i (s) = Ais
2H . It follows that (8) can be rewritten in terms of a power-

law

Sq =
〈
W q/2

〉
(q−1)!!

[√
2Ai

]q
sqH
{ √

2
π if q is odd

1 if q is even
q = 1,2,3... (11)15

where it is clear that a log-log plot of Sq versus s is linear at all lags and associated
with a constant slope qH.

Following Neuman et al. (2012) we now consider subordinators W 1/2 ≥ 0 that

have divergent ensemble moments 〈W q/2〉 of all orders q ≥ 2α, as does the pre-
viously discussed Lévy subordinator with stability index α. In practical applications,20

〈|∆Y ′(s;λl ,λu)|q〉 is typically estimated through a sample structure function
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Sq
|∆Y |,N,M (s;λl ,λu) =

1
N(s)M

M∑
m=1

N(s)∑
n=1

|∆ym (xn,s;λl ,λu)|q q = 1,2,3... (12)

where ∆ym(xn,s;λl ,λu) denotes a collection of M <∞ sets of N(s) <∞ sampled incre-
ments each; for simplicity, we ignore possible variations of N(s) and xn with m. Writing

∆ym(xn,s;λl ,λu) = w1/2
m ∆gm(xn,s;λl ,λu) where ∆gm(xn,s;λl ,λu) and wm respectively

represent samples of W and ∆G′ (s; λl ,λu) allows rewriting Eq. (12) as5

Sq
|∆Y |,N,M

(s;λl ,λu) =
1
M

M∑
m=1

wq/2
m

1
N (s)

N(s)∑
n=1

|∆gm (xn,s;λl ,λu)|q. q = 1,2,3... (13)

Since order q ≥ 2α moments of w1/2
m diverge while all moments of ∆gm(xn,s;λl ,λu)

converge, one can approximate Eq. (13) for a sufficiently large sample size N(s) by

Sq
|∆Y |,N,M

(s;λl ,λu) '
(

1
M

M∑
m=1

wq/2
m

)
〈|∆G′ (s; λl ,λu)|q〉

=

(
1
M

M∑
m=1

wq/2
m

)[√
2γ2

i (s; λl ,λu)
]q

(q−1)!!

{√
2
π if q is odd

1 if q is even

q = 1,2,3... (14)

which, for finite M, is always finite. One can then write10

Sq+1
|∆Y |,N,M (s;λl ,λu)

Sq
|∆Y |,N,M (s;λl ,λu)

'

M∑
m=1

w (q+1)/2
m

M∑
m=1

wq/2
m


√
π q!!

(q−1)!!

√
γ2
i (s; λl ,λu) if q is odd

2√
π

q!!
(q−1)!!

√
γ2
i (s; λl ,λu) if q is even

q = 1,2,3... (15)

or, in analogy to Eq. (10),
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Sq+1
|∆Y |,N,M (s;λl ,λu) '

M∑
m=1

w (q+1)/2
m

M∑
m=1

wq/2
m


√

π
2

[√
π
2

1
(q−1)!!

] 1
q

q!!
(q−1)!!

[
Sq
|∆Y |,N,M (s;λl ,λu)

]1+ 1
q

if q is odd√
2
π

[
1

(q−1)!!

] 1
q q!!

(q−1)!!

[
Sq
|∆Y |,N,M (s;λl ,λu)

]1+ 1
q

if q is even

q = 1,2,3... (16)5

This indicates that Sq+1
|∆Y |,N,M

(s;λl ,λu) is approximately linear in Sq
|∆Y |,N,M

(s;λl ,λu) on log-

log scale, in accord with ESS expression Eq. (3), regardless of the functional form
〈∆G′ (s; λl ,λu)2〉 takes. The slope of this line is characterized by the same asymptotic
behavior as that observed before. The approximate equivalence between Eq. (14) and

the ESS expression Eq. (7), where f (s) =
[√

2γ2
i (s; λl ,λu)

]
, are the basis for Eq. (16)10

and its asymptotic tendency. It follows that extended power-law scaling, or ESS, at all
lags is an intrinsic property of samples from sub-Gaussian processes subordinated to
tfBm with subordinators, such as Lévy, which have divergent ensemble moments of
orders q ≥ 2α.

Note that in the limits λl → 0 and λu →∞, Eq. (14) becomes a power-law15

Sq '
(

1
M

M∑
m=1

wq/2
m

)
(q−1)!!

[√
2Ai

]q
sqH
{ √

2
π if q is odd

1 if q is even
q = 1,2,3... (17)

rendering logSq linear in logs with constant slope qH.
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3 Analysis of log air permeabilities from borehole tests in unsaturated fractured
tuff near Superior, Arizona

We analyze (natural) log air permeability (Y = logk, k being permeability) data from
unsaturated fractured tuff at a former University of Arizona research site near Superior,
Arizona. Our analysis focuses on logk values obtained by Guzman et al. (1996) from5

steady state interpretations of 184 pneumatic injection tests in 1-m long intervals along
6 boreholes at the site (Fig. 1). Five of the boreholes (V2, W2a, X2, Y2, Z2) are 30 m
long and one (Y3) has a length of 45 m; five (W2a, X2, Y2, Y3, Z2) are inclined at 45◦

and one (V2) is vertical. The boreholes cover a horizontal area of 25.83×21.43 m2.
Riva et al. (2012) hypothesized that the data derive from a Lévy stable distribution,10

estimated the parameters of this distribution by three different methods and examined
the degree to which each distribution estimate fits the data. We focus here on param-
eter estimates obtained by them using a maximum likelihood (ML) approach applied to
a log characteristic function

ln〈eiϕX 〉 = iµϕ −σα |ϕ|α [1+ iβsign(ϕ)ω (ϕ,α)]15

ω (ϕ,α) =
{

− tan πα
2 if α 6= 1

2
π ln |ϕ| if α = 1

(18)

of an α-stable variable, X ; ϕ is a real-valued parameter; sign(ϕ) = 1, 0, −1 if ϕ> 0,
= 0, < 0, respectively; α ∈ (0,2] is stability index; β ∈ [−1,1] is skewness parameter;
σ > 0 is scale parameter; and µ is shift or location parameter. The authors found Y ′ =20

logk−〈logk〉 to fit Eq. (18) with parameter estimates α̂ = 2.0±0.00, σ̂ = 1.42±0.15 and
µ̂ = 0.00±0.29. Note that reliable estimates, β̂, of β are difficult to obtain when α̂ ≈ 2
because β does not affect the distribution when α = 2.

Figure 2a compares the frequency distribution of the data with their ML estimated
probability density function and Fig. 2b depicts a corresponding Q-Q plot. The fits are25

ambiguous enough to suggest that their near-Gaussian appearance could in fact indi-
cate a Lévy stable distribution with α just slightly smaller than 2. That this is likely the
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case follows from the tendency of α̂, fitted to the distributions of log k increments, to
increase from 1.46±0.21 at 1 m lag through 1.84±0.16 at lag 2 m and 1.91±0.12 at lag
3 m to 2 at lags equal to or exceeding 4 m. Increments corresponding to lags smaller
than 4 m are thus clearly heavy tailed (and hence non-Gaussian) as evidenced further
by Fig. 3, which compares frequency distributions and ML estimated probability density5

functions of Y ′ = logk−〈logk〉 data and logk increments at lags 1 m, 2 m and 5 m. Had
the original log k data been genuinely Gaussian, the same would have to be true for
their increments.

Figure 4 depicts omnidirectional structure functions, Sq
N , of orders q = 1, 2, 3, 4, 5

computed for the same data according to Eq. (12) regardless of orientation l. To com-10

pute them we ascribe each measurement to the midpoint of the corresponding 1-m
scale borehole test interval. We then associate (as is common in geostatistical prac-
tice) data pairs separated by distances of 1.5–2.5 m with a lag of 2 m, those separated
by distances of 2.5–3.5 m with a lag of 3 m, and so on up to the largest separation dis-
tances of 29.5–30.5 m, which we associate with a lag of 30 m. Figure 5 shows that the15

number of data pairs associated in this manner with each lag is largest at intermediate
lags, causing log k increments to be comparatively undersampled at small and large
lags. Such undersampling may explain in part why the structure functions in Fig. 4
scale differently with separation scale at small, intermediate and large lags. Standard
moment analysis would entail fitting straight lines to these functions at intermediate20

lags by regression and considering their slopes to represent power-law exponents ξ(q)
in Eq. (2). However, deciding what constitutes an appropriate range of intermediate
lags for such analysis would, in the case of Fig. 4, be fraught with ambiguity.

We avoid this ambiguity by plotting in Fig. 6 Sq
N versus Sq−1

N for 2 ≤ q ≤ 5 on log-log
scale for the entire range of available lags. Also shown in Fig. 6 are linear regression fits25

to each of these relationships, the corresponding regression equations and coefficients
of determination, R2. As the latter exceed 0.99 in all cases, we conclude with a high
degree of confidence that Sq

N is a power β(q,q−1) of Sq−1
N for 2 ≤ q ≤ 5 at all lags, in

accord with ESS expression Eq. (3). This power, given by the slopes of the regression
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lines in Fig. 6, decreases from 1.66 at q = 2 through 1.29 at q = 3 and 1.17 at q = 4 to
1.12 to q = 5, appearing to tend asymptotically toward 1 with increasing q. Considering
Sq
N to vary as a power ξ(q) of s according to Eq. (2) at intermediate lags, as suggested

by Fig. 4, allows expressing the power of Sq
N in Eq. (3) as β(q,q−1) = ξ(q)/ξ(q−1).

Asymptotic tendency of β(q,q−1) toward 1 then implies asymptotic tendency of ξ(q) to-5

ward a straight line. This commonly observed tendency, which the multifractal literature
attributes to divergence of higher-order moments, is according to our theory (Neuman,
2010a; Guadagnini and Neuman, 2011) unrelated to such divergence, arising instead
from the presence of an upper cutoff scale, λu.

Figure 4 includes two vertical broken lines demarcating a midrange of lags within10

which logS1
N appears to be quite unambiguously linear in logs. Fitting a straight line

to the corresponding data by regression yields ξ (1) = 0.56 with a high coefficient of
determination, R2 = 0.97. This, together with values of β(q,q−1) = ξ(q)/ξ(q−1) cor-
responding to 2 ≤ q ≤ 5 in Fig. 6, allows us to compute ξ(q) for this entire range of q
values, as depicted in Fig. 7. Figure 7 also includes for reference one straight line hav-15

ing slope ξ(1) = 0.56 and another having slope H = 0.33, estimated for the same data
by Riva et al. (2012). Their estimate follows from a treatment of the data as a sample
from a sub-Gaussian random field subordinated to tfBm via a Lévy stable subordina-
tor. It is evident that ξ(q) in Fig. 7 is nonlinear concave in q in the range 2 ≤ q ≤ 5.
Though such nonlinear scaling is typical of multifractals or fractional Laplace motions,20

we have demonstrated theoretically earlier that it is in fact consistent with a random
field subordinated to tfBm via a heavy-tailed subordinator.

4 Analysis of nitrogen minipermeameter data from sandstone near
Escalante, UTAH

Castle et al. (2004) describe nitrogen minipermeameter measurements conducted on25

a flat, nearly vertical outcrop of Straight Cliffs Formation sandstones about 10 km north-
west of Escalante, Utah. The outcrop, measuring approximately 21 m across and 6 m
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high, includes a lower bioturbated facies and an upper cross-bedded facies (Fig. 8).
A total of 515 permeability measurements were taken in triplicate at a sample spacing
of 15 cm along three horizontal transects (380 measurements) and four vertical profiles
(135 measurements). We found data collected along the vertical profiles to be poorly
suited for an analysis of vertical log permeability scaling at the site. Though we have5

analyzed jointly omni-directional scaling of all (natural) log permeability data as well
as horizontal scaling of data from all three horizontal transects, we focus below on
horizontal scaling of the data along transects D and H. In this manner we confine our
analysis to a single bioturbated facies as proposed, for example, by Lu et al. (2002).

Transect H contains 133 data points and transect D 136 points. Correspondingly, the10

number of data pairs yielding horizontal log permeability increments decreases from
267 for a lag of 0.15 m to 169 for the largest lag of 7.50 m we consider. In a manner
consistent with Riva et al. (2012), we use the computer code STABLE (Nolan, 1997,
2001) to obtain reliable ML estimates of stable densities. Treating the data as if they
were Lévy stable yields ML parameter estimates α̂ = 1.99±0.05, σ̂ = 0.28±0.02 and15

µ̂ = 0.00±0.05. As α̂ ≈ 2, estimates of β are not reliable and therefore not reported.
The corresponding ML estimated probability density function is compared with the

frequency distribution of the Y ′ = logk−〈logk〉 data on semi-logarithmic and arithmetic
scales in Fig. 9. Both Kolmogorov–Smirnov and Shapiro–Wilk tests reject the hypoth-
esis that the data are Gaussian at a 0.1 % significance level. A χ2 test applied to the20

same data by Castle et al. (2004) has shown them to be Gaussian only at a 51 %
confidence level.

ML estimates α̂ of the Lévy index of log permeability increments vary from 1.89±0.13
at horizontal lag 0.15 m through 1.86±0.14 at lag 0.3 m, 1.66±0.18 at lag 0.45 m,
1.86±0.14 at lag 0.6 m, 1.82±0.16 at lag 0.75 m, 1.99 at lag 0.9 m to 2.00 at larger25

lags as illustrated in Fig. 10. ML estimates σ̂ of the scale parameter in Fig. 10 increase
monotonically with lag toward a constant asymptote of 0.32±0.03. Figure 11 com-
pares frequency distributions and ML estimated probability density functions of logk
increments along transects D and H at horizontal lags of 0.15 m, 0.45 m, 0.75 m and
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1.5 m. Kolmogorov–Smirnov and Shapiro–Wilk tests generally reject the hypothesis
that the increments are Gaussian at a 0.1 % significance level. Molz et al. (2005) found
the increments at lag 0.15 m to fit a Laplace distribution.

Suppose that the data correspond to a sub-Gaussian random field subordinated to
tfBm via a Lévy stable subordinator consistent with the above ML parameter estimates.5

Then, by virtue of Eq. (6), one may estimate the associated Hurst coefficient from the
log-log slope of σ̂(s) in Fig. 10 at lags small enough to avoid the asymptote. This slope
yields an estimate H = 0.13.

From Eq. (6) it follows that, asymptotically, σ̂2
G = 2σ̂2 where G′ (s;λl ,λu) is our tfBm.

This, coupled with our ML estimates of σ̂ for the logk − 〈logk〉 data, yields σ̂2
G = 2×10

(0.28)2 = 0.16. Having thus estimated H and σ2
G we are now in a position to estimate the

remaining parameters of the TPV γ2
G (s;λl ,λu) of G′ (s;λl ,λu) defined in Eq. (5). Setting

i = 1 in Eq. (5) we obtain the following ML estimates of the cutoff scales, λl ≈ 0.0 m
and λu = 16.97 m (with 95 % confidence limits 3.45 m and 30.47 m; setting i = 2 yields
a less satisfactory fit, suggesting that i = 1 is a better choice). Our estimate of λl is15

consistent with the small support scale of the minipermeameter. Our estimate of λu
is slightly smaller than the lengths of the D and H transects (on the order of 20 m),
as expected from theory (Guadagnini et al., 2012). Figure 12 depicts experimental
scale parameters and their theoretical equivalents based on the above ML estimates
of σ̂2

G, H , λl and λu. Dashed curves in the figure represent 95 % confidence limits of20

corresponding λu estimates.
Figure 13 depicts sample structure functions of order q = 1, 2, 3, 4, 5, 6 for the

data. Vertical lines demarcate the midrange of lags within which a regression line,
the slope of which was taken to represent ξ(1), had been fitted to S1

N . The latter was
found to be ξ(1) = 0.11 with coefficient of determination R2 = 0.93. This value is only25

slightly smaller than that obtained earlier from the log-log slope of σ̂(s) in Fig. 10.
Figure 14 shows log-log plots of Sq

N versus Sq−1
N for 2 ≤ q ≤ 6 and corresponding linear

regression fits. The fits are characterized by coefficients of determination, R2, two of
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which exceed 0.98 and three 0.99. The slope of the fitted lines decreases from 1.86 at
q = 2 through 1.40 at q = 3, 1.25 at q = 4, and 1.19 at q = 5 to 1.15 at q = 6, appearing
to tend asymptotically toward 1 as expected. Adopting the above value of ξ(1) = 0.11
allows computing ξ(q) for 2 ≤ q ≤ 6 using the ESS relationship β(q,q−1) = ξ(q)/ξ(q−
1). The results are plotted in Fig. 15 together with straight lines having slopes ξ (1) =5

0.11 and H = 0.13. It is clear that ξ(q) is nonlinear concave in q within the range 2 ≤
q ≤ 6. Though such nonlinear scaling is typical of multifractals or fractional Laplace
motions, we have demonstrated theoretically earlier that it is in fact consistent with
a random field subordinated to tfBm via a heavy-tailed subordinator.

5 Conclusions10

Our analyses lead to the following conclusions:

1. Extended power-law scaling, commonly known as extended self similarity or ESS,
is an intrinsic property of sub-Gaussian random fields or processes subordinated
to truncated fractional Brownian motion (tfBm). Such fields and processes are
theoretically consistent with standard power-law scaling at intermediate lags and15

with ESS at all lags, including small and large lags at which power-law scaling
breaks down.

2. Multifractals and fractional Laplace motions are theoretically consistent with stan-
dard power-law scaling at all lags. As such, they neither reproduce observed
breakdown in power-law scaling at small and large lags nor explain how ESS20

extends power-law scaling to such lags.

3. 1-m scale pneumatic packer test data from unsaturated fractured tuffs near Supe-
rior, Arizona, and pneumatic minipermeameter data from bioturbated sandstone
near Escalante, Utah, and their increments, show heavy-tailed frequency distribu-
tions that can be fitted with a high level of confidence to Lévy stable distributions.25
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4. Order q sample structure functions of each data set scale as a power ξ(q) of
separation scale or lag, s, over limited ranges of s. ESS extends this range to all
lags and yields a nonlinear concave functional relationship between ξ(q) and q.

5. Both data sets are consistent with sub-Gaussian random fields subordinated to
tfBm via Lévy stable subordinators.5

6. This consistency allows estimating all tfBm parameters (most notably the Hurst
exponent and upper/lower cutoff scales) solely on the basis of the corresponding
truncated power variograms.

7. The consistency further implies that nonlinear scaling of both data sets, man-
ifested in a nonlinear concave relationship between their power-law exponents10

ξ(q) and q, is not an indication of multifractality but an artifact of sampling as
explained theoretically by Neuman (2010a) and Guadagnini et al. (2012).
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Fig. 1. Spatial locations of Arizona data. 
Fig. 1. Spatial locations along each borehole of Arizona data.
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Fig. 2. (a) Frequency distribution (symbols) and ML estimated probability density function (solid 

curve) of Arizona data; (b) Q-Q plot of empirical data versus theoretical estimate of stable distribution. 

Fig. 2. (a) Frequency distribution (symbols) and ML estimated probability density function (solid
curve) of Arizona data; (b) Q-Q plot of empirical data versus theoretical estimate of stable
distribution.
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Fig. 3. Frequency distributions (symbols) and ML estimated probability density functions (curves) of 

(a) Arizona ' log log= −Y k k  data (red) and log k increments at lags s = (b) 1 m (black), (c) 2 m 

(green), and (d) 5 m (blue). 

Fig. 3. Frequency distributions (symbols) and ML estimated probability density functions
(curves) of (a) Arizona Y ′ = logk − 〈logk〉 data (red) and logk increments at lags s = (b) 1 m
(black), (c) 2 m (green), and (d) 5 m (blue).
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Fig. 4. Sample structure functions of orders q = 1, 2, 3, 4, 5 of Arizona data versus lag. Light vertical 

broken lines demarcate midrange of lags within which heavy inclined broken line, with slope taken to 

represent ( )1ξ , was fitted to 1

N
S . 

Fig. 4. Sample structure functions of orders q = 1, 2, 3, 4, 5 of Arizona data versus lag. Light
vertical broken lines demarcate midrange of lags within which heavy inclined broken line, with
slope taken to represent ξ(1), was fitted to S1

N .
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Fig. 5. Number of Arizona data pairs associated with each lag. Fig. 5. Number of Arizona data pairs associated with each lag.
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Fig. 6. Log–log variations of Sq
N of Arizona data with Sq−1

N for 2 ≤ q ≤ 5. Solid lines represent
indicated regression fits.
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Fig. 7. ξ(q) as a function of q (symbols) obtained via ESS based on ( )1 0.56ξ =  computed for Arizona 

data by method of moments. Solid line has slope ( )1 0.56ξ =  and dashed line slope H = 0.33 estimated 

for these data based on our theory, using maximum likelihood, by Riva et al. (2012). 

Fig. 7. ξ(q) as a function of q (symbols) obtained via ESS based on ξ(1) = 0.56 computed
for Arizona data by method of moments. Solid line has slope ξ(1) = 0.56 and dashed line
slope H = 0.33 estimated for these data based on our theory, using maximum likelihood, by
Riva et al. (2012).
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Fig. 8. Locations of nitrogen minipermeameter measurements along sandstone outcrop near Escalante, 

Utah. Modified after Castle et al. (2004). 

Fig. 8. Locations of nitrogen minipermeameter measurements along sandstone outcrop near
Escalante, Utah. Modified after Castle et al. (2004).
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Fig. 9. Frequency distribution (symbols) and ML estimated probability density function (curves) of 

Utah ' log log= −Y k k  data on (a) semi-logarithmic and (b) arithmetic scales.  

Fig. 9. Frequency distribution (symbols) and ML estimated probability density function (curves)
of Utah Y ′ = logk − 〈logk〉 data on (a) semi-logarithmic and (b) arithmetic scales.
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Fig. 10. Variations of ML Lévy index estimates α̂  and scale parameter estimates σ̂  of Utah log 

permeability increments with horizontal lag along transects D and H. 

Fig. 10. Variations of ML Lévy index estimates α̂ and scale parameter estimates σ̂ of Utah log
permeability increments with horizontal lag along transects D and H.
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Fig. 11. Frequency distributions (symbols) and ML estimated probability density functions (curves) of 

Utah log k increments along transects D and H at horizontal lags (a) 0.15 m, (b) 0.45 m, (c) 0.75 m, and 

(d) 1.5 m. 

Fig. 11. Frequency distributions (symbols) and ML estimated probability density functions
(curves) of Utah logk increments along transects D and H at horizontal lags (a) 0.15 m,
(b) 0.45 m, (c) 0.75 m, and (d) 1.5 m.
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Fig. 12. Experimental scale parameter (diamonds) and their theoretical equivalents based on ML fit 

(solid curve) of TPV (6). Dashed curves represent 95% confidence limits of corresponding λu 

estimates. 

Fig. 12. Experimental scale parameter (diamonds) and their theoretical equivalents based on
ML fit (solid curve) of TPV (6). Dashed curves represent 95 % confidence limits of correspond-
ing λu estimates.
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Fig. 13. Sample structure functions of order q = 1, 2, 3, 4, 5, 6 of Utah data. Light vertical 

broken lines demarcate midrange of lags within which heavy inclined broken line, with slope taken to 

represent ( )1ξ , was fitted to 1

N
S . 

Fig. 13. Sample structure functions of order q = 1, 2, 3, 4, 5, 6 of Utah data. Light vertical
broken lines demarcate midrange of lags within which heavy inclined broken line, with slope
taken to represent ξ(1), was fitted to S1

N .
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Fig. 14. Log-log variations of 
q

N
S  of Utah data with 

1q

N
S

−
 for 2 ≤ q ≤ 6. Solid lines represent 

indicated regression fits.  

Fig. 14. Log–log variations of Sq
N of Utah data with Sq−1

N for 2 ≤ q ≤ 6. Solid lines represent
indicated regression fits.
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Fig. 15. ξ(q) as a function of q (symbols) obtained via ESS based on ( )1 0.11ξ =  computed for Utah 

data by method of moments. Solid line has slope ( )1 0.11ξ =  and broken line has slope H = 0.13. 

 

Fig. 15. ξ(q) as a function of q (symbols) obtained via ESS based on ξ(1) = 0.11 computed for
Utah data by method of moments. Solid line has slope ξ(1) = 0.11 and broken line has slope
H = 0.13.
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